Effect of ionic strength on initial interactions of Escherichia coli with surfaces, studied on-line by a novel quartz crystal microbalance technique.
نویسندگان
چکیده
A novel quartz crystal microbalance (QCM) technique was used to study the adhesion of nonfimbriated and fimbriated Escherichia coli mutant strains to hydrophilic and hydrophobic surfaces at different ionic strengths. This technique enabled us to measure both frequency shifts (Deltaf), i.e., the increase in mass on the surface, and dissipation shifts (DeltaD), i.e., the viscoelastic energy losses on the surface. Changes in the parameters measured by the extended QCM technique reflect the dynamic character of the adhesion process. We were able to show clear differences in the viscoelastic behavior of fimbriated and nonfimbriated cells attached to surfaces. The interactions between bacterial cells and quartz crystal surfaces at various ionic strengths followed different trends, depending on the cell surface structures in direct contact with the surface. While Deltaf and DeltaD per attached cell increased for nonfimbriated cells with increasing ionic strengths (particularly on hydrophobic surfaces), the adhesion of the fimbriated strain caused only low-level frequency and dissipation shifts on both kinds of surfaces at all ionic strengths tested. We propose that nonfimbriated cells may get better contact with increasing ionic strengths due to an increased area of contact between the cell and the surface, whereas fimbriated cells seem to have a flexible contact with the surface at all ionic strengths tested. The area of contact between fimbriated cells and the surface does not increase with increasing ionic strengths, but on hydrophobic surfaces each contact point seems to contribute relatively more to the total energy loss. Independent of ionic strength, attached cells undergo time-dependent interactions with the surface leading to increased contact area and viscoelastic losses per cell, which may be due to the establishment of a more intimate contact between the cell and the surface. Hence, the extended QCM technique provides new qualitative information about the direct contact of bacterial cells to surfaces and the adhesion mechanisms involved.
منابع مشابه
Inactivation of ompX causes increased interactions of type 1 fimbriated Escherichia coli with abiotic surfaces.
During the initial steps of biofilm formation, bacteria have to adapt to a major change in their environment. The adhesion-induced phenotypic changes in a type 1 fimbriated Escherichia coli strain included reductions in the levels of several outer membrane proteins, one of which was identified as OmpX. Here, the phenotypes of mutant strains that differ at the ompX locus were studied with regard...
متن کاملStructural changes in hemoglobin during adsorption to solid surfaces: effects of pH, ionic strength, and ligand binding.
We have studied the adsorption of two structurally similar forms of hemoglobin (met-Hb and HbCO) to a hydrophobic self-assembled methyl-terminated thiol monolayer on a gold surface, by using a Quartz Crystal Microbalance (QCM) technique. This technique allows time-resolved simultaneous measurements of changes in frequency (f) (c.f. mass) and energy dissipation (D) (c.f. rigidity/viscoelastic pr...
متن کاملInfluence of natural organic matter on the deposition kinetics of extracellular polymeric substances (EPS) on silica.
The influence of humic acid and alginate, two major components of natural organic matter (NOM), on deposition kinetics of extracellular polymeric substances (EPS) on silica was examined in both NaCl and CaCl(2) solutions over a wide range of environmentally relevant ionic strengths utilizing a quartz crystal microbalance with dissipation. Deposition kinetics of both soluble EPS and bound EPS ex...
متن کاملEffect of adsorption of charged molecules on the structure of Alginate gel
Natural origin, biocompatibility, low production cost and particularly ability of controlled release of the alginate gel are among the parameters which allow their utilization in pharmaceutical and food applications. For these purposes stability of gel, swelling and shrinkage due to the surrounding conditions like pH, temperature, ionic strength or interaction with molecules such as enzyme or s...
متن کاملKinetic characterization of the retinoic X receptor binding to specific and unspecific DNA oligoduplexes with a quartz crystal microbalance.
Quartz Crystal Microbalance (QCM) biosensor technology was used to study the interaction of the DNA-binding domain (DBD) of the transcription factor RXRα with immobilized specific (DR1) and unspecific (DR1neg) DNA oligoduplexes. We identify the QCM sensor frequency at the susceptance minimum (fBmin) as a better measuring parameter, and we show that fBmin is proportional to the mass adsorbed at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 181 17 شماره
صفحات -
تاریخ انتشار 1999